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FINITE ELEMENT APPROXIMATION 
TO A CONTACT PROBLEM 

IN LINEAR THERMOELASTICITY 

M. I. M. COPETTI 

ABSTRACT. A finite element approximation to the solution of a one-dimen- 
sional linear thermoelastic problem with unilateral contact of the Signorini 
type and heat flux is proposed. An error bound is derived and some numerical 
experiments are performed. 

1. INTRODUCTION 

We shall consider the numerical approximation of the following one-dimensional 
evolution problem with unilateral contact of the Signorini type: 

(l.a) D20 = Ot + a(Du)t x E I, t > O, 

(l.b) D2U = aDO xEI, t> 0, 

(1.l1c) 9(x,) =p(Ax) x E- I, 

(1.1d) 60(, t) O A t > O, 

(li.e) -DO(1, t) = kO(l, t) t > 0, 

(l.f) u(0,t) = 0 t > 0, 

(1.ig) u(i, t) < g, Du(1, t) < a(1, t) t > 0, 

(1.1h) (Du(1,t) -aO(, t))(u(i, t)-g) = 0 t > 0, 

where O(x, t) and u(x, t) are the temperature and the displacement (parallel to the 
x-axis) of a homogeneous elastic body AB. The interval I (0, 1) is the reference 
configuration of the body at the reference temperature r= 0. The coupling 
constant a is usually small and is given in terms of physical parameters. 

Here, D - ,f 
a and g > 0 is a constant representing the gap between the end 

B (x 1) and an obstacle at temperature 0 0. At the end A (x = 0), the 
body has a constant temperature OA and it is clamped. The right end x = 1 is 
free to expand or contract and the body may be in contact with the obstacle or 
inot. However, the position of the right edge at t > 0 is not known a priori and 
the displacement cannot be more than g. A heat flux between the body and the 
obstacle is allowed with a constant heat transfer coefflcient k > 0. The process is 
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assumed to be slow and the acceleration term, present in the equations of linear 
thermoelasticity, has been omitted in (1. lb) leading to a quasi-static problem ([2]). 
We refer to Carlson ([3]) and Day ([6]) for physical background and mathematical 
modelling. Existence results to this problem were obtained by Andrews et al. in [1] 
using a heat transfer coefficient which may depend on the contact pressure and the 
distance of the right edge from the obstacle. Some numerical experiments using a 
finite difference scheme were performed by Shi et al. in [11]. 

Existence, uniqueness and regularity results to the solution of the contact prob- 
lem with the temperature of the body being constant at both ends have been 
established by Copetti and Elliott in [4], Gilbert et al. in [9] and Shi and Shillor 
in [10]. In [4] Copetti and Elliott have also proposed and analysed a finite element 
approximation. The quasi-static problem with the body clamped at the boundary 
was studied by Day in [6]. The static case with unilateral Signorini boundary con- 
dition together with heat flux was investigated by Duvaut in [7] and an existence 
result to the full dynamic problem was obtained by Elliott and Qi in [8j. 

In this paper, we shall follow the work of Copetti and Elliott ([4]). 
Following the idea introduced by Shi and Shillor in [10] we shall reformulate the 

problem into a decoupled form. Let us assume that the problem (l.la)-(l.lh) has 
a classical solution. Integrating (1.1b) from x to 1 we obtain 

(1.2) Du(l, t) - Du(x, t) = a ((1,t) O-(x) t)), 0 < x < 1, t > 0, 

and another integration with respect to x, from 0 to x, together with (1.if) yields 

(1.3) xDu(l, t) - u(x, t) = aj ((l, t) - 0(, t)) ,d 0 < x < 1, t > 0, 

and, in particular, 

u(l, t) = Du(l, t) -aj (a (, t)- O(x,t)) dx. 

From (1.1h) we have 

(u(l, t) -a O(x, t)dx) (u(1, t) -g) 0 

anid the condition Du(l, t) < aJ(1, t) implies 

u(l, t) < af (x, t)dx. 

Therefore 

(1.4) u(1, t) mm {a j (x, t)dx, g} 

and 

Du(l, t) min {a jO(x, t)dx,9} g + a ((1, t) - O (x, t)) dx 

( 1 A 
(1.5) m Iax a ,6 (x, t)dx -g, 0 + JS(l, t). 



FEM TO A CONTACT PROBLEM 1015 

Using this result in equation (1.2) gives 

(1.6) Du(x, t) = -max {aj 0(x,t)dx9,O} +aO(x,t). 

Differentiating this equation with respect to t we obtain 

(Du)t(x, t)= at(x, t)- max {a 0(x, t)dx - g, O} 

and equation (li.a) may be written as 

(1+a2)Ot =D2 O+a2 max { O(x, t)dx-9, O 

Recalling (1.3) and (1.5) we find that the displacement is given by 

u(x,t) =-ax max{j a(x,t)dx - ,O}+ajO%0tt)ck. 

The following existence and uniqueness result was obtained by Andrews et al. 
in [1]: 

Theorem 1.1. Given p(x) c H1(I) with p(O) = OA and k E C'(R), k > 07 there 
exists a unique 0 E H21 (QT) satisfying 

(1 +a2)t = D2 + a2 dtax{O(x, t)dx- v,O}, a.. in QT, 

0(x, O) =p(x), xe I, 
0(0O t) OA, 0 < t < T, 
-DO(1, t) - k0(1, t), a.e. in (0, T), 

where QT - I X (0,T), provided 0 < a < 1. 

Remark 1.2. In the work of Andrews et al., in [1], OA = 1 and the heat transfer 
coefficient k(.) is a function of g - u(1, t) + &(t), where &(t) = Du(1, t) - aO(1, t). 

Remark 1.3. It would be natural to consider the general case where the temperature 
at x = 0 is time dependent and may be different from the value of the initial 
temperature at x = 0. This was done by Copetti and Elliott in [41 when the 
temperature of the body is constant at both ends. 

Letting 0(x, t) = 0(x, t) + OA(X -1) we obtain the contact problem with homo- 
geneous boundary condition at x 0 for the temperature 

(1. 7a) (1 + a2)Ot - D20 =a2 dt ['lJ+ x E I, t> O, 
dt 

(1. 7b) -y (t) :=(1, 0 (t)) -r t > O, 

(1. 7c) O(X, O) = 00(X) = p(x) + OA (X-) X (E I,, 
(1.7d) -DO(1, t) = kO(1, t) - OA, t > 0, 

(1.7e) 0(0,t) 0- O, t > 0, 

where (,*) is the L2-inner product, [-y(t)I+]: max{y(t), 0} and r = 9- O Note a 2 
that &(t) -a[-y(t)]+. 

Throughout this paper, we denote the norms of L2(I) and HS (I) by and 
I, respectively. The semi-norm IlDv is indicated by v ll. 
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2. THE FINITE ELEMENT APPROXIMATION OF {O, -y} 

Integrating (1.7a) against test functions X in HE (I) v {V E H1(I)Iv(O) O} 
and using the boundary conditions we obtain 

(2.1) (1 + a2)(Ot, X) + (DO, DX) + kO(1, t)X(l) = OAX(1) + a2 dH [HY]+(1, x) 

Let 0 = xo < x1 < ... < x, = 1 be an equidistant partition of the interval (0, 1) 
into subintervals Ij = (xj1,xj), j 1,... ,s, of length h 1 and denote by Sh 
the finite element space 

E x Co(I): Xlij E P1, X(O) = ?}- 

where P1 is the space of linear functions. 
The discrete Galerkin method for (1.7a)-(1.7e) is to find O C Sh and F7, 

n =1,... ,N, suchthatVXCSh 

(1+ a2) ( I x) + (DE)nI DX) + k(On(1)X(1) 

(2.2a) OAX(l) + a2 -[n ]+-[n-l] + \ 

(2 .2b) rn = ( 1, E3n )-r 

with (0 the L2-projection of 00 and F? = -y(O) and where A\t T . This choice of N 
0? turns out to be convenient for the error analysis. 

Given (n-1 we iterate to find 0n 

(1 + a2)(E)n , X) + At(DE)n , DX) + AtkE3n (1)X(1) 

(2.3) (1 +a 2)(En-1, X) + AtOAX(l) + a2([Fn F]+ -[ x+, 

where 71n (1, E?_u)-r. 

Theorem 2.1. There exists a unique sequence {n=}4N=1 solving (2.2a) and (2.2b). 

Proof. Writing 
S 

n 
E I,i Xi, 

i=l1 

where {Xi} I is the piecewise linear basis for SE, and taking X = Xj, j 1,...,s, 
in (2.3) results in 

(1 + a2) cni (X,, Xj) + A\t 
C 
nic(Dxi, DXj) + A\tk C3 clx,(1 )xj(l) 

i=l i=l i=l 

(1 + a2) cn-(Xi, Xj) + AtOAX(1) + a2([FnU]+ -[ ]+,Xj). 
i=l1 

Hence, given E0n we have to solve the system 

((1 + a2)M + A\tK + A\tkB) cn = (1 + a2)MCn-1 + A\tOAd + a2e, 
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where 

Mij = (Xi, Xj), Kij =(DXi, DXj), 

{C,},ngTh i -I = { cl i}v - = ci } 

Bij= 0 i,j 5 s, B881, 

{d}0i = is, {L}4 = 1, 

{e}l, ([Frn 1+ - [Fn-l+)h i= n s, {} ([ 1+ [n-l+) 

Since k > 0, (1 + a2)M + A\tK + A\tkB is invertible and the above system has a 
unique solution Cn. 

Defining F: Sh __ Sh such that, for 0 e Sh, F(E)) satisfies, for any X e sh 

(1 + a2)(.F(E0), x) + At(D.F(E)), DX) + Atk.F(E)(1)X(l) 

(2.4) (1 + a2)(0n- 1, X) + AtOAX(1) + a2([F(0)]+ - [fn l]+, X), 

where F(0) = (1, 0) - r, it follows that F is well defined and (2.2a) and (2.2b) has 
a unique solution if F has a unique fixed point. 

Let us take 0, r7 C Sh. By (2.4), VX C Sh 

(1 + a2) (F(0) - F(7q), x) + A t(D(.F(0) - .F(,q)), Dx) 

+/\tk (QF(e0)(1) - .F&(r)(1)) X(1) a2([F(G)I+ - [r(7)) X) 
Choosing X = F(E() - F(), we obtain 

+1a2)11 (E) _F( )l2 ? tq(1) _ ( A) t + ? tk[F(e)(1) - )(1)2 

< a2 11[(0)]+ - [F(rq)]+ 1 (ll - F7)1 

< a2 -1 E . 1F(E)-F(7) 1 
a2 a2 a F(0)-(r7)fl2 

2 2 
Using k > 0 results in 

2 ~~~~~~2 (i?;2 n)112< a0110-11 2 + 
2 ~~~~~~2 

Therefore, 

< a 2 

-2 +a2 

and F is a contraction on Sh. Thus, the sequence { W} defined by (2.3) converges 
to the unique solution of (2.2a) and (2.2b) for any choice of 0O. D 

Next, we derive an error bound for the approximation (2.2a) and (2.2b). We will 
use the projection Ph: HE -> Sh defined by 

(2.5) (DPEhv, DX) = (DV, DX) V1X E SE. 

By [5] we have 

(2.6aX,vPEV + D i -v C1, ... 2 S 

(2.6b) I||V -PEhvll + hIlDv -DPEhvll < Ch 2JIVI12. 
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Theorem 2.2. Let {0(t),-y(t)} be the solution of (1.7a)-(1.7e) and {E) n,pn} be 
the solution of (2.2a) and (2.2b). Then 

N 

/\t ,1: II) n - 0)(tn 112 < CS, T) (h4 + (/\t)2) 
n=1 

and, as a consequence, 

E)n 0(tn) 11 < C(O,T) ((t)1/2 + (At)1/2) 

IFn- )(tn) I < C (0, T) ( zt />+ (/\t) 1/2) 

with C a constant independent of h and /\t and tn = nA\t. 

Proof. Observe that we need only derive the first estimate. Let On 0(tn) and 
= -Y(tn). Integrating equation (2.1) from 0 to tn and summing (2.2a) from 1 to 

n, we obtain VX E Sh 

(1 + a2)(on, X) -(1 + a2)(00, X) + (DOTn, Dx) + kX(1) (j 0 0(1, t)dt) 

(2.7) tnOAX(1) + a 2([_yn]+ - [Y(0)]+)(,x), 

n n 
(1 + a2)(O?2, x)-(1 + a2)(0A, x) + t j DE), DX) + Z\tkX(1) S 

(2.8) tnOAX(l) + a2([]pn] +-[]+)(1, X), 

where On - fjj 0(s)ds. Thus, using (2.5), we have VX E E 

(1+ a 2)(on -0 on X) - D hPn _ AStE 0) DX) 

(2.9) +kX(1) (z\t E E2 (1) -n (1)) a2([]?n+ - [_n]+, X)- 

Let us define 

A)= /t , (i- PE0 j=1,.., n, 
i=1 

0 =o 

8 = tX- 0(s)ds, j 1,... n. 

It follows that 
?j - j- _ ph J 

A\t - - 

and by (2.9), VX ES 
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where 

I1 (1 +a 2)(0onP_ pOl, 

and 

'a2 ([FTn] - I2 a a2[n+[_n]+, X)- 

Thus 

(1+ a 2) At S ,X) + (DEn, DX) + kX (1) (E (1) + PEh (1 -fl) =I + 12 

and (2.6a) implies that 

(2.10) (1 + a2) t , x) + (DE", DX) + kX(1)On(j) _1I + '2. 

By applying the Cauchy-Schwarz inequality, we have 

+1 
= )0 +0n_pE0 ) 

(1 + a 2) ( tJ (s - tn_I)t(s)ds + At j (0 (s) -PE (s)) ds, X 

< (1+a a2)IIXIIAn-1, 

where 

I (( < I 1 t( )2 ds + (z\tj | 0(s) - PEho(s) 2ds) d ) 

and 

12 < ax2IIII(n _ 3nl 
< a21 X n h-P +phn -n 

< An-la211XII +a2IXII 
n _n 

A\t 

Taking X 1t in (2.10) results in 

1?a2 IIn _ ?n 112 + 1 (DEn D(On n-? 1)) + t (0(1) 
n-I 

(1))5 (1) 

2 a n n-1112 + C 
n 7-lI < 

(At)2 
_ IAnl 

Therefore, 

-1112 + 0n 77-112 + IE7r,2 -1i2) 

k 2 k 
+ k (0n(1) _ 0n -1(1))2 + t ((j())2 - (?n-1(1))2) 

1 n n-I2 + 
8-8I 

? +CA2 
- 2(A\t)2 __n_ 
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and 

>3 _ _j-1 112 + _ | j-1 12 1 r 2 
j=1 j=1 

kk 
+ _- (> j (81() -_ j 1 (1)) 2 + (? (1)) 2 

1= 

< - ?012 
k 
_(0 ( 1) ) 2 + C A2_ 

j=1 

Since k > 0, Eo = 0 and (2.6b) holds, the regularity result given by Theorem 1.1 
and the definition of Aj-1 yields 

nri- 2 

A\tZ zXt + |n 12 + k (O (1))2 < C(O, T)(h4 + (At) 2). 

j=1 

Noting that 

E- 0(tn) =(-2 PIE + PE (t7) 

the result follows. D 

3. THE FINITE ELEMENT APPROXIMATION OF U 

A natural approximation to 

(3.1) u(x, t,) = -ax[Y(tn)]+ + a j O(t, tn,)d + aQA x- 2) 

is given by U" E Kh, where K/i = {v E C?(I): vIj E PI,v(0) = 0, v(1) < g} 
defined by 

(3.2) U"Z(xj) =-ax [IF"]+ + 0a W (x)dx+aOA ,xi- 2 ), ... Is, 

satisfying the following error bound. 

Theorem 3.1. Suppose that u(t,) is given by (3.1). Then 

vju (x,, t,) - U" (xj) < C (O, T) ((t) 1/2 + (At) 1/2) 

Proof. Observe that 

(x,-, t -U' (xj) = axj [IF],] +-[-y"] +) + a jX(0?2(x) - E)` (x))dx 

and so 

|u(x,j, t,) - U" (x,.)l < aI[IF' ]+ -[1' ]+1 I+ all 
o 

- 6'H' 11 

< 2al lO-' - 

The result is now a consequence of the error bound for the approximation of the 

temperature. D: 
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4. THE STEADY-STATE 

The stationary problem in (1.la)-(1.lh) is to find {0(x), ui(x)} such that 

D20 0, x E I, 

D 2i aDO, x E I, 
0(0) OA, 

-DO(1) = k0(1), 
iu(0) = 0, 

ui(l) < g, Dui(l) < aJ(1), 

(Dui(l)- J(1))(i(l) - g) = 0. 

WNe can see that {0, u} given by 

(4.1) 0(x) = OA + (0(1) - OA)X, 

(4.2a) ui(x) aQAX + (0(1)-OA)x2 if 2(0(1) + OA) < g, 

2 )2 a- 
(4.2b) u(x) (8 + aOA)x + O(A(1) - A)x if 2(0(1) + OA) > g, 

where & Dui(1) - a(1), is the solution to this problem, and 

0(1)= 1= k' 

u(1) = min { (O(1) + OA), g} 

Hence, for fixed a, k and g, there is contact or not depending on OA. Taking 
OA > 0, it follows that 0 < 0(1) ?< A and therefore, at the steady-state, contact 
will not be observed for g > aQA. If g < aOA there will be contact with the obstacle. 

When k = 0 we have 0(1) OA and u(1) = min{aOA,g}. In the limit case, 
k -> +so, we find that 

0 (X) OA (1 -X), 

0(x) > O( 

-D0(1) - A, 

u(1) m> min{aOA, g}, 
-> min{g - aOA, 0}, 

with no temperature difference between the end B and the obstacle. 

5. NUMERICAL EXPERIMENTS 

In our numerical simulations we took A\t = h2, a = 0.017 and g = 0.1; the value 
for a was taken from the work by Gilbert et al., in [9]. As an initial guess to 0' 
we choose E)?-l and the iterative process (2.3) was stopped when the difference 
between successive iterates was less than or equal to 1.0 x 10-7. We let h= , 
p(X) = OA COs 2ix and 00 was the interpolant of 00. Numerical integration, namely 
the trapezoidal rule, was used to compute M with the resulting matrix M being di- 
agonal with diagonal elements Ihj = h, i 7& s, As = h. Note that the temperature 2 

0is shown in the pictures. 
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FIGURE 1. The evolution in time of the temperature from the- 
initial condition when 0A =10 for (a) k 0 , (b) k =1, (c). k =10 
and (d) k= 100. 
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FiGURE 2. The evolution in time of the displacement when OA 

10 for (a) k 0,O (b) k = 1, (c) k= 10 and (d) k= 100. 
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To investigate the convergence to the steady-state solution and the contact condi- 
tion we performed four experiments. The numerical results are presented in Figures 
1 and 2 where the temperature and the displacement are shown for t = 0, 0.002, 
0.02, 0.2 and 4. The graphs did not change after the final state shown and the 
computations were stopped. 

We fixed OA = 10 and took increasing values of the heat transfer coefficient k, 
k = 0, 1, 10 and 100. Contact is observed when k = 0 and k = 1 and for k = 100, 
0(1) is very small. 

In all simulations, the numerical results are in agreement with the theoretical 
results given above. 
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